Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene

Abstract

Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors.

Data availability

The data that supports the argument and generates the plots in this paper are available from the corresponding author upon reasonable request.

References

  1. 1.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS 
    Article 

    Google Scholar
     

  2. 2.

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS 

    Google Scholar
     

  3. 3.

    Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS 

    Google Scholar
     

  4. 4.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS 

    Google Scholar
     

  5. 5.

    Hasan, M. Z., Xu, S. Y., Belopolski, I. & Huang, S. M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Matter Phys. 8, 289–309 (2017).

    CAS 

    Google Scholar
     

  6. 6.

    Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl node and spin texture in trigonal tellurium and selenium. Phys. Rev. Lett. 114, 206401 (2015).


    Google Scholar
     

  7. 7.

    Nakayama, K. et al. Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory. Phys. Rev. B 95, 125204 (2017).


    Google Scholar
     

  8. 8.

    Tsirkin, S. S., Puente, P. A. & Souza, I. Gyrotropic effects in trigonal tellurium studied from first principles. Phys. Rev. B 97, 035158 (2018).

    CAS 

    Google Scholar
     

  9. 9.

    Agapito, L. A., Kioussis, N., Goddard, W. A. & Ong, N. P. Novel family of chiral-based topological insulators: elemental tellurium under strain. Phys. Rev. Lett. 110, 176401 (2013).


    Google Scholar
     

  10. 10.

    Şahin, C., Rou, J., Ma, J. & Pesin, D. A. Pancharatnam-Berry phase and kinetic magnetoelectric effect in trigonal tellurium. Phys. Rev. B 97, 205206 (2018).


    Google Scholar
     

  11. 11.

    Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978 (2018).

    CAS 

    Google Scholar
     

  12. 12.

    Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    CAS 

    Google Scholar
     

  13. 13.

    Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    CAS 

    Google Scholar
     

  14. 14.

    Zhang, C. L. et al. Ultraquantum magnetoresistance in the Kramers–Weyl semimetal candidate β-Ag2Se. Phys. Rev. B 96, 1–10 (2017).


    Google Scholar
     

  15. 15.

    von Klitzing, K. & Landwehr, G. Surface quantum states in tellurium. Solid State Commun. 9, 2201–2205 (1971).


    Google Scholar
     

  16. 16.

    Silbermann, R. & Landwehr, G. Surface quantum oscillations in accumulation and inversion layers on tellurium. Solid State Commun. 16, 6–9 (1975).


    Google Scholar
     

  17. 17.

    von Klitzing, K. Magnetophonon oscillations in tellurium under hot carrier conditions. Solid State Commun. 15, 1721–1725 (1974).


    Google Scholar
     

  18. 18.

    Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018).


    Google Scholar
     

  19. 19.

    Du, Y. et al. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 17, 3965–3973 (2017).

    CAS 

    Google Scholar
     

  20. 20.

    Wu, W., Qiu, G., Wang, Y., Wang, R. & Ye, P. Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47, 7203–7212 (2018).

    CAS 

    Google Scholar
     

  21. 21.

    Qiu, G. et al. Quantum transport and band structure evolution under high magnetic field in few-layer tellurene. Nano Lett. 18, 5760–5767 (2018).

    CAS 

    Google Scholar
     

  22. 22.

    Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005).

    CAS 

    Google Scholar
     

  23. 23.

    Li, L. et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10, 608–613 (2015).

    CAS 

    Google Scholar
     

  24. 24.

    Li, L. et al. Quantum hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    CAS 

    Google Scholar
     

  25. 25.

    Yang, J. et al. Integer and fractional quantum Hall effect in ultra-high quality few-layer black phosphorus transistors. Nano Lett. 18, 229–234 (2018).

    CAS 

    Google Scholar
     

  26. 26.

    Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin Inse. Nat. Nanotechnol. 12, 223–227 (2017).

    CAS 

    Google Scholar
     

  27. 27.

    Fallahazad, B. et al. Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 1–5 (2016).


    Google Scholar
     

  28. 28.

    Movva, H. C. P. et al. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).


    Google Scholar
     

  29. 29.

    Wu, Z. et al. Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides. Nat. Commun. 7, 12955 (2016).

    CAS 

    Google Scholar
     

  30. 30.

    Pisoni, R. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

    CAS 

    Google Scholar
     

  31. 31.

    Ren, X. et al. Gate-tuned insulator-metal transition in electrolyte-gated transistors based on tellurene. Nano Lett. 19, 4738–4744 (2019).

    CAS 

    Google Scholar
     

  32. 32.

    Qiu, G. et al. High-performance few-layer tellurium CMOS devices enabled by atomic layer deposited dielectric doping technique. In 2018 76th Device Research Conference (DRC) 1–2 (IEEE, 2018).

  33. 33.

    Berweger, S. et al. Imaging carrier inhomogeneities in ambipolar tellurene field effect transistors. Nano Lett. 19, 1289–1294 (2019).


    Google Scholar
     

  34. 34.

    Liu, H., Neal, A. T., Si, M., Du, Y. & Ye, P. D. The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights. IEEE Electron Device Lett. 35, 795–797 (2014).


    Google Scholar
     

  35. 35.

    Perello, D. J., Chae, S. H., Song, S. & Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 6, 7809 (2015).

    CAS 

    Google Scholar
     

  36. 36.

    Wang, C. H. et al. Unipolar n-type black phosphorus transistors with low work function contacts. Nano Lett. 18, 2822–2827 (2018).

    CAS 

    Google Scholar
     

  37. 37.

    Coss, B. E. et al. Near band edge Schottky barrier height modulation using high-κ dielectric dipole tuning mechanism. Appl. Phys. Lett. 95, 222105 (2009).


    Google Scholar
     

  38. 38.

    Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).


    Google Scholar
     

  39. 39.

    Zhang, N. et al. Evidence for Weyl fermions in the elemental semiconductor tellurium. arXiv Prepr. arXiv1906.06071 (2019).

  40. 40.

    Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).


    Google Scholar
     

  41. 41.

    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001 (2013).


    Google Scholar
     

  42. 42.

    Xiong, J. et al. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6Ω∙cm). Phys. E 44, 917–920 (2012).

    CAS 

    Google Scholar
     

  43. 43.

    Yu, W. et al. Quantum oscillations at integer and fractional Landau level indices in single-crystalline ZrTe5. Sci. Rep. 6, 35357 (2016).

    CAS 

    Google Scholar
     

  44. 44.

    Hu, J. et al. π Berry phase and Zeeman splitting of Weyl semimetal TaP. Sci. Rep. 6, 18674 (2016).

    CAS 

    Google Scholar
     

  45. 45.

    Zhao, Y. et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional dirac semimetal Cd3As2. Phys. Rev. X 5, 031037 (2015).


    Google Scholar
     

  46. 46.

    Roth, L. Semiclassical theory of magnetic energy levels and magnetic susceptibility of Bloch electrons. Phys. Rev. 145, 434 (1966).

    CAS 

    Google Scholar
     

  47. 47.

    Dhillon, J. S. & Shoenberg, D. The de Haas-van alphen effect III. Experiments at fields up to 32 KG. Philos. Trans. R. Soc. A 248, 1–21 (1955).


    Google Scholar
     

  48. 48.

    Alexandradinata, A., Wang, C., Duan, W. & Glazman, L. Revealing the topology of Fermi-surface wave functions from magnetic quantum oscillations. Phys. Rev. X 8, 11027 (2018).

    CAS 

    Google Scholar
     

  49. 49.

    Xu, S. et al. Odd-integer quantum hall states and giant spin susceptibility in p-type few-layer WSe2. Phys. Rev. Lett. 118, 067702 (2017).


    Google Scholar
     

  50. 50.

    Niu, C. et al. Gate-tunable Strong Spin-orbit Interaction in Two-dimensional Tellurium Probed by Weak-antilocalization. arXiv Prepr. arXiv1909.06659 (2019).

  51. 51.

    Rotenberg, E. Topological insulators: The dirt on topology. Nat. Phys. 7, 8–10 (2011).

    CAS 

    Google Scholar
     

  52. 52.

    Mallet, P. et al. Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy. Phys. Rev. B 86, 045444 (2012).


    Google Scholar
     

  53. 53.

    Shinno, H., Yoshizaki, R., Tanaka, S., Doi, T. & Kamimura, H. Conduction band structure of tellurium. J. Phys. Soc. Jpn. 35, 525–533 (1973).

    CAS 

    Google Scholar
     

  54. 54.

    Liu, Y., Wu, W. & Goddard, W. A. Tellurium: fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 140, 550–553 (2018).

    CAS 

    Google Scholar
     

  55. 55.

    Zasadzinski, J. A., Viswanathan, R., Madsen, L., Garnaes, J. & Schwartz, D. K. Langmuir-Blodgett films. Science 263, 1726–1733 (1994).

    CAS 

    Google Scholar
     

Download references

Acknowledgements

P.D.Y. was supported by NSF/AFOSR 2DARE programmes ARO and SRC. W.W. acknowledges the College of Engineering and School of Industrial Engineering at Purdue University for the startup support. W.W. was partially supported by a grant from the Oak Ridge Associated Universities (ORAU) Junior Faculty Enhancement Award Programme. W.W. and P.D.Y. were also supported by NSF under grant no. CMMI-1762698. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1644779 and the State of Florida. G.Q. and C.N. acknowledge technical support from National High Magnetic Field Laboratory staff J. Jaroszynski, A. Suslov and W. Coniglio. The authors want to give special thanks to K. von Klitzing, T. Ando, W. Pan, K. Chang, F. Zhang, C. Liu, K. Cho, Y. Nie and J. Hwang for the insightful discussions on electronic structures of Te. The authors also acknowledge A. R. Charnas for editorial assistance.

Author information

Affiliations

  1. School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA

    Gang Qiu, Chang Niu, Mengwei Si, Zhuocheng Zhang & Peide D. Ye

  2. Birck Nanotechnology Centre, Purdue University, West Lafayette, IN, USA

    Gang Qiu, Chang Niu, Mengwei Si, Zhuocheng Zhang & Peide D. Ye

  3. School of Industrial Engineering, Purdue University, West Lafayette, IN, USA

    Yixiu Wang & Wenzhuo Wu

Contributions

P.D.Y. conceived and supervised the project. P.D.Y. and G.Q. designed the experiments. Y.W. synthesized the material under the supervision of W.W. G.Q. and C.N. fabricated the devices. G.Q., C.N. and Z.Z. performed the magneto-transport measurements. G.Q., C.N., M.S. and Z.Z. analysed the data. P.D.Y. and G.Q. wrote the manuscript with input and comments from all the authors.

Corresponding author

Correspondence to
Peide D. Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, G., Niu, C., Wang, Y. et al. Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene.
Nat. Nanotechnol. (2020). https://doi.org/10.1038/s41565-020-0715-4

Download citation

Read More