The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility

Abstract

Pachytene PIWI-interacting RNAs (piRNAs), which comprise >80% of small RNAs in the adult mouse testis, have been proposed to bind and regulate target RNAs like microRNAs, cleave targets like short interfering RNAs or lack biological function altogether. Although piRNA pathway protein mutants are male sterile, no biological function has been identified for any mammalian piRNA-producing locus. Here, we report that males lacking piRNAs from a conserved mouse pachytene piRNA locus on chromosome 6 (pi6) produce sperm with defects in capacitation and egg fertilization. Moreover, heterozygous embryos sired by pi6−/− fathers show reduced viability in utero. Molecular analyses suggest that pi6 piRNAs repress gene expression by cleaving messenger RNAs encoding proteins required for sperm function. pi6 also participates in a network of piRNA–piRNA precursor interactions that initiate piRNA production from a second piRNA locus on chromosome 10, as well as pi6 itself. Our data establish a direct role for pachytene piRNAs in spermiogenesis and embryo viability.

Data availability

All sequencing data are available through the National Center for Biotechnology Information Sequence Read Archive using accession number PRJNA634688. Source data are provided with this paper.

Code availability

The code used for identifying piRNA-directed cleavage sites is available at https://github.com/weng-lab/GTBuster. All other codes used in this study are described in the Methods and Nature Research Reporting Summary. Source data are provided with this paper.

References

  1. 1.

    Aravin, A. A. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785–799 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  2. 2.

    Lewis, S. H. et al. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat. Ecol. Evol. 2, 174–181 (2018).

    PubMed 

    Google Scholar
     

  3. 3.

    Batista, P. J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  4. 4.

    Das, P. P. et al. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 31, 79–90 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  5. 5.

    Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129, 69–82 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  6. 6.

    Robine, N. et al. A broadly conserved pathway generates 3′ UTR-directed primary piRNAs. Curr. Biol. 19, 2066–2076 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  7. 7.

    Ozata, D. M. et al. Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans. Nat. Ecol. Evol. 4, 156–168 (2019).

    PubMed 

    Google Scholar
     

  8. 8.

    Chirn, G. W. et al. Conserved piRNA expression from a distinct set of piRNA cluster loci in eutherian mammals. PLoS Genet. 11, e1005652 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  9. 9.

    Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).

    PubMed 

    Google Scholar
     

  10. 10.

    Li, X. Z. et al. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 50, 67–81 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  11. 11.

    Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363–367 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  12. 12.

    Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709–1714 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  13. 13.

    Ro, S. et al. Cloning and expression profiling of testis-expressed piRNA-like RNAs. RNA 13, 1693–1702 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  14. 14.

    Bolcun-Filas, E. et al. A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development 138, 3319–3330 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  15. 15.

    Deng, W. & Lin, H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819–830 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  16. 16.

    Reuter, M. et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264–267 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  17. 17.

    Zheng, K. & Wang, P. J. Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet. 8, e1003038 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  18. 18.

    Wasik, K. A. et al. RNF17 blocks promiscuous activity of PIWI proteins in mouse testes. Genes Dev. 29, 1403–1415 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  19. 19.

    Castañeda, J. et al. Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice. EMBO J. 33, 1999–2019 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  20. 20.

    Homolka, D. et al. PIWI slicing and RNA elements in precursors instruct directional primary piRNA biogenesis. Cell Rep. 12, 418–428 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  21. 21.

    Xu, M. et al. Mice deficient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control. Biol. Reprod. 79, 51–57 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  22. 22.

    Goh, W. S. et al. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev. 29, 1032–1044 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  23. 23.

    Zhang, P. et al. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res. 25, 193–207 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  24. 24.

    Gou, L. T. et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 24, 680–700 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  25. 25.

    Vourekas, A. et al. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat. Struct. Mol. Biol. 19, 773–781 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  26. 26.

    Palumbo, G., Bonaccorsi, S., Robbins, L. G. & Pimpinelli, S. Genetic analysis of Stellate elements of Drosophila melanogaster. Genetics 138, 1181–1197 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  27. 27.

    Mével-Ninio, M., Pelisson, A., Kinder, J., Campos, A. R. & Bucheton, A. The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis. Genetics 175, 1615–1624 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  28. 28.

    Bozzetti, M. P. et al. The Ste locus, a component of the parasitic cry-Ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein kinase 2. Proc. Natl Acad. Sci. USA 92, 6067–6071 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  29. 29.

    Livak, K. J. Detailed structure of the Drosophila melanogaster stellate genes and their transcripts. Genetics 124, 303–316 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  30. 30.

    Livak, K. J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107, 611–634 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  31. 31.

    Robert, V., Prud’homme, N., Kim, A., Bucheton, A. & Pélisson, A. Characterization of the flamenco region of the Drosophila melanogaster genome. Genetics 158, 701–713 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  32. 32.

    Prud’homme, N., Gans, M., Masson, M., Terzian, C. & Bucheton, A. flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139, 697–711 (1995).

    PubMed 
    PubMed Central 

    Google Scholar
     

  33. 33.

    Pélisson, A. et al. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J. 13, 4401–4411 (1994).

    PubMed 
    PubMed Central 

    Google Scholar
     

  34. 34.

    Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  35. 35.

    Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  36. 36.

    Saito, K. et al. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461, 1296–1299 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  37. 37.

    Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  38. 38.

    Bourc’his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004).

    PubMed 

    Google Scholar
     

  39. 39.

    Ahmadi, A. & Ng, S. C. Fertilizing ability of DNA-damaged spermatozoa. J. Exp. Zool. 284, 696–704 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  40. 40.

    Morris, I. D., Ilott, S., Dixon, L. & Brison, D. R. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum. Reprod. 17, 990–998 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  41. 41.

    Lewis, S. E. & Aitken, R. J. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 322, 33–41 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  42. 42.

    Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  43. 43.

    Kuretake, S., Kimura, Y., Hoshi, K. & Yanagimachi, R. Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol. Reprod. 55, 789–795 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  44. 44.

    de Lamirande, E., Leclerc, P. & Gagnon, C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol. Hum. Reprod. 3, 175–194 (1997).

    PubMed 

    Google Scholar
     

  45. 45.

    Florman, H. M. & Storey, B. T. Mouse gamete interactions: the zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Dev. Biol. 91, 121–130 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  46. 46.

    Jin, M. et al. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc. Natl Acad. Sci. USA 108, 4892–4896 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  47. 47.

    Stauss, C. R., Votta, T. J. & Suarez, S. S. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol. Reprod. 53, 1280–1285 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  48. 48.

    Suarez, S. S., Katz, D. F., Owen, D. H., Andrew, J. B. & Powell, R. L. Evidence for the function of hyperactivated motility in sperm. Biol. Reprod. 44, 375–381 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  49. 49.

    Qi, H. et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc. Natl Acad. Sci. USA 104, 1219–1223 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  50. 50.

    Quill, T. A. et al. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc. Natl Acad. Sci. USA 100, 14869–14874 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  51. 51.

    Mortimer, S. T. CASA—practical aspects. J. Androl. 21, 515–524 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  52. 52.

    Goodson, S. G., Zhang, Z., Tsuruta, J. K., Wang, W. & O’Brien, D. A. Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol. Reprod. 84, 1207–1215 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  53. 53.

    González-Jara, P. et al. Optimization of the balance between effort and yield in unilateral surgical transfer of mouse embryos. Lab. Anim. 51, 622–628 (2017).

    PubMed 

    Google Scholar
     

  54. 54.

    Sun-Wada, G. H. et al. A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J. Biol. Chem. 277, 18098–18105 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  55. 55.

    Huang, T. T. et al. pH and protease control of acrosomal content stasis and release during the guinea pig sperm acrosome reaction. Biol. Reprod. 32, 451–462 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  56. 56.

    Son, S. W. et al. Prognostic significance and function of the vacuolar H+-ATPase subunit V1E1 in esophageal squamous cell carcinoma. Oncotarget 7, 49334–49348 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  57. 57.

    Chung, J. J. et al. CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. eLife 6, e23082 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  58. 58.

    Brown, S. G. et al. Homozygous in-frame deletion in CATSPERE in a man producing spermatozoa with loss of CatSper function and compromised fertilizing capacity. Hum. Reprod. 33, 1812–1816 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  59. 59.

    Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315, 1587–1590 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  60. 60.

    Mohn, F., Handler, D. & Brennecke, J. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 348, 812–817 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  61. 61.

    Han, B. W., Wang, W., Li, C., Weng, Z. & Zamore, P. D. Noncoding RNA piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348, 817–821 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  62. 62.

    Gainetdinov, I., Colpan, C., Arif, A., Cecchini, K. & Zamore, P. D. A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in most animals. Mol. Cell 71, 775–790.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  63. 63.

    Post, C., Clark, J. P., Sytnikova, Y. A., Chirn, G. W. & Lau, N. C. The capacity of target silencing by Drosophila PIWI and piRNAs. RNA 20, 1977–1986 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  64. 64.

    Kiuchi, T. et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509, 633–636 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  65. 65.

    Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  66. 66.

    Becker, W. R. et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol. Cell 75, 741–755.e11 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  67. 67.

    Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055–1067 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  68. 68.

    Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  69. 69.

    Borini, A. et al. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum. Reprod. 21, 2876–2881 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  70. 70.

    Sakkas, D. et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum. Reprod. 13, 11–19 (1998).

    PubMed 

    Google Scholar
     

  71. 71.

    Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  72. 72.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  73. 73.

    Truett, G. E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52–54 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  74. 74.

    Holloway, J. K., Sun, X., Yokoo, R., Villeneuve, A. M. & Cohen, P. E. Mammalian CNTD1 is critical for meiotic crossover maturation and deselection of excess precrossover sites. J. Cell Biol. 205, 633–641 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  75. 75.

    Cole, F. et al. Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics. Nat. Genet. 46, 1072–1080 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  76. 76.

    Nagy, A., Gertsenstein, M. V. K. & Behringer, R. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2003).

  77. 77.

    Yanagimachi, R., Yanagimachi, H. & Rogers, B. J. The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol. Reprod. 15, 471–476 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  78. 78.

    Johnson, A., Smith, R. G., Bassham, B., Lipshultz, L. I. & Lamb, D. J. The microsperm penetration assay: development of a sperm penetration assay suitable for oligospermic males. Fertil. Steril. 56, 528–534 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  79. 79.

    Talbot, P., Summers, R. G., Hylander, B. L., Keough, E. M. & Franklin, L. E. The role of calcium in the acrosome reaction: an analysis using ionophore A23187. J. Exp. Zool. 198, 383–392 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  80. 80.

    Osman, R. A., Andria, M. L., Jones, A. D. & Meizel, S. Steroid induced exocytosis: the human sperm acrosome reaction. Biochem. Biophys. Res. Commun. 160, 828–833 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  81. 81.

    Arnoult, C., Zeng, Y. & Florman, H. M. ZP3-dependent activation of sperm cation channels regulates acrosomal secretion during mammalian fertilization. J. Cell Biol. 134, 637–645 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  82. 82.

    Tateno, H. et al. Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proc. Natl Acad. Sci. USA 110, 18543–18548 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  83. 83.

    Mortimer, D., Curtis, E. F. & Miller, R. G. Specific labelling by peanut agglutinin of the outer acrosomal membrane of the human spermatozoon. J. Reprod. Fertil. 81, 127–135 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  84. 84.

    Fu, Y., Wu, P. H., Beane, T., Zamore, P. D. & Weng, Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics 19, 531 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  85. 85.

    Han, B. W., Wang, W., Zamore, P. D. & Weng, Z. piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing. Bioinformatics 31, 593–595 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  86. 86.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  87. 87.

    Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  88. 88.

    Wang, W. et al. Slicing and binding by Ago3 or Aub trigger Piwi-bound piRNA production by distinct mechanisms. Mol. Cell 59, 819–830 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  89. 89.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

Download references

Acknowledgements

We thank P. Cohen, K. Grive and E. Crate at Cornell University for generously sharing protocols and advice on germ cell sorting and meiotic chromosome studies; H. Florman, P. Visconti and M. Gervasi for sharing protocols and advice on sperm studies; the UMMS Transgenic Animal Modeling Core for advice on fertility test and embryo phenotype; the UMMS FACS core for advice on and help with germ cell sorting; the UMMS EM Core (supported by National Center for Research Resources Award SI0OD021580) for advice on and help with sperm transmission electron microscopy; and members of our laboratories for critical comments on the manuscript. This work was supported in part by National Institutes of Health grants GM62862 to P.D.Z. and P01HD078253 to P.D.Z. and Z.W.

Author information

Author notes

  1. Yu Fu

    Present address: Oncology Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, USA

Affiliations

  1. Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA

    Pei-Hsuan Wu, Katharine Cecchini, Deniz M. Özata, Amena Arif, Cansu Colpan, Ildar Gainetdinov & Phillip D. Zamore

  2. Bioinformatics Program, Boston University, Boston, MA, USA

    Yu Fu

  3. Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA

    Yu Fu, Tianxiong Yu & Zhiping Weng

  4. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA

    Amena Arif, Cansu Colpan & Zhiping Weng

  5. School of Life Sciences and Technology, Tongji University, Shanghai, China

    Tianxiong Yu

Contributions

P.-H.W., K.C., Y.F., Z.W. and P.D.Z. conceived and designed the experiments. P.-H.W., K.C., D.M.Ö., A.A. and C.C. performed the experiments. Y.F., T.Y., I.G. and P.-H.W. analyzed the sequencing data. P.-H.W., Y.F. and P.D.Z. wrote the manuscript.

Corresponding authors

Correspondence to
Pei-Hsuan Wu or Zhiping Weng or Phillip D. Zamore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Confirmation of mutant founder genotypes.

a, Genotyping of mutant founders by PCR. Mutant founders were generated by injecting sgRNAs and Cas9 mRNAs into C57BL/6 one-cell zygotes, which were transferred to surrogate mothers and screened after birth. Gel images were cropped for clarity (see also Source Data). Genomic sequences of pi6 promoter region in pi6em1(b) and pi6em2(c) mouse lines. The presence of both deleted and undeleted PCR products indicate a heterozygous mutant founder that carries just one CRISPR-edited chromosome. d, Genomic sequences of pi17 promoter region in pi17–/– mouse lines. Dashes, genomic sequences deleted by CRISPR; dots, unaltered sequence omitted for clarity.

Extended Data Fig. 2 pi6em1/em1 adult male phenotype.

a, Number of litters produced in 6 months by 2–8 month-old males. b, Body and testis weight of 2–4 month-old pi6em1/em1 and pi6em2/em2 males. Each dot represents an individual mouse. Vertical lines denote median; boxes report 75th and 25th percentiles; whiskers indicate the maximal and minimal values. c, Representative spermatozoa from C57BL/6 and pi6em1/em1 males. d, Representative patterns of meiotic chromosome synapsis in pi6em1/em1 pachytene spermatocytes. SYCP1, Synaptonemal complex protein 1; SYCP3, Synaptonemal complex protein 3. e, Quantification of patterns of meiotic chromosome synapsis depicted in (d) from C57BL/6 (n = 4) and pi6em1/em1 (n = 4) males.

Extended Data Fig. 3 Abundance of transposons in pi6em1/em1 and pi6em2/em2 germ cells.

a, Proportions of the whole genome or piRNA sequences composed of repetitive sequences. b, Abundance of mature piRNAs from the top five major pachytene piRNA-producing loci in indicated cell types measured by small RNA-seq. Each dot represents the abundance of unique-mapping reads in one C57BL/6 (n = 3) or pi6em1/em1 (n = 3) male. Vertical black lines denote median; boxes report 75th and 25th percentiles; whiskers indicate the maximal and minimal values. c, Abundance of transposon-derived RNAs in mouse germ cells. Each dot represents the mean of four (wild-type and pi6em1/em1) or three (pi6em2/em2) biologically independent RNA-seq experiments. Gray dots indicate change in abundance <2-fold and/or FDR > 0.05 determined by DESeq2 (see also Methods).

Extended Data Fig. 5 Transcripts directly cleaved by pi6 and pi10-qC2-545.1 piRNAs.

a, Strategy to identify piRNA-directed cleavage sites. b, pi6-dependent cleavage sites in mRNAs or pachytene piRNA precursors from pi10-qC2-545.1 and pi10-qA3-143.1 showing inferred base pairing with the corresponding pi6 piRNA guides. An exemplary piRNA guide is shown where more than one piRNA can direct the same cleavage. c, Cleavage sites in pi6 precursors explained by pi10-qC2-545.1 piRNAs. An exemplary piRNA guide is shown.

Extended Data Fig. 6 Transcriptome changes in pi6em1/em1 and pi6em2/em2 cells.

a, Expression of mRNAs measured by qRT-PCR using oligo dT(20) to prime cDNA synthesis and PCR primers spanning pi6 piRNA-directed cleavage sites (gene names in red) or designed to detect full-length RNA (gene names in black). Pou2f2 mRNA abundance in spermatids was below the limit of detection by qRT-PCR. b, Abundance of piRNA precursors from the top five major pachytene piRNA-producing loci in indicated cell types measured by RNA-seq. For (a) and (b), thick vertical lines denote median, boxes report 75th and 25th percentiles, and whiskers indicate the maximal and minimal values. Each dot represents an individual mouse.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Fu, Y., Cecchini, K. et al. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility.
Nat Genet (2020). https://doi.org/10.1038/s41588-020-0657-7

Download citation

Read More